Структура научных публикаций ИПФ СО РАН (анализ показателей БД INSPEC к юбилею учреждения)

Шабурова Н.Н., Самбур Н.В. (Институт физики полупроводников им. А.В. Ржанова СО РАН)

В 2007 г. Сибирское отделение Российской академии наук (СО РАН) отметило свой 50-летний юбилей. В его состав входят и более молодые научно-исследовательские институты, юбилейные даты которых еще впереди, Институт полупроводников например, физики А.В. Ржанова (ИФП) СО РАН. «Молодость» ИФП обусловлена тем, что он был создан в 1964 г. при слиянии двух ранее организованных институтов СО АН СССР: Института радиофизики и электроники (ИРЭ), существующего с 1957 г. [2], и Института физики твердого тела и полупроводниковой электроники, основанного в 1962 г. [3]. Корнями они уходили в Отдел технической физики Западно-Сибирского филиала Академии наук и Физический Институт им. П.Н. Лебедева АН СССР (ФИАН) соответственно.

Литературные источники [1, 4] дают современное представление о направлениях в деятельности института, о научных школах, об исследованиях и достижениях ученых ИФП, об их спектре и масштабах. На основе научных исследований сконструированы устройства ночного видения, созданы установки молекулярно-лучевой эпитаксии. Ими оснащены ряд отечественных институтов и научные и технологические организации ближнего и дальнего зарубежья, что обеспечивает широкую известность ИФП в мировом научном сообществе.

В ежегодных информационных сборниках «Научные результаты института» (рис.1), издающихся на русском и английском языках, приводятся краткие аннотации наиболее интересных научно-исследовательских работ и прикладных разработок его сотрудников и перечни статей, напечатанных в рецензируемых отечественных и зарубежных журналах. Более детальный учет публикационной деятельности ученых Института ведется в локальной базе данных (БД) «ПРНД» (показатель результа-

Рисунок 1. Сборники научных результатов ИФП СО РАН

тивности научной деятельности), наполняемой как ученым секретарем ИФП на основе отчетов научных сотрудников, так и самими научными сотрудниками. БД вычисляет обоснованные показатели для определения стимулирующих надбавок. Также она является базой для библиографической БД «Публикации сотрудников ИФП» (http://www.isp.nsc.ru/index.php), насчитывающей к настоящему времени 2 213 записей за 2002-2011 гг. (монографии, статьи и приглашенные доклады).

Как «измеряются» научные результаты ИФП в различных внешних онлайновых БД, вызывает не менее злободневный интерес, т. к. содержащиеся в них наукометрические данные представлены в мировом масштабе и позволяют увидеть относительную значимость организации, лаборатории, отдельного ученого. Комплексный анализ таких сведений может явиться достойным посвящением грядущему 50-летию института.

Данная статья продолжает ряд библиометрических исследований научных достижений института [5, 6] с помощью БД Inspec на платформе EBSCO. Inspec (Information Service for Physics, Electronics and Computing) является специализированной реферативной БД, отражающей научные и технические публикации в области физики, электротехники, электроники, связи, автоматического контроля, вычислительной техники, информационных технологий и механики. Она генерируется Институтом инженеров-электриков Великобритании и содержит более 11 млн. документов. Поиски по БД были проведены в марте-апреле 2013 г. с использованием функции <Advanced Search> и запроса <AF Inst* Semicond* Phys* Novosibirsk> с указанием индекса поля AF «Адрес автора» и применением специального режима <Find all of my search terms> для разыскания всех заданных слов в пределах фразы. Таким образом, принадлежность публикаций к ИФП СО РАН устанавливалась по адресам авторов, приведенным в Б Π^{1} . В результате был получен список из 3 998 публикаций с 1968 г. по настоящее время (в т.ч. 1 561 — c 2002 по 2011 гг.), который был подвергнут ручному редактированию и проанализирован как по всем доступным в Inspec параметрам, так и с помощью дополнительных приемов. При этом сравнение с показателями БД «ПРНД» в пределах одинаковых хронологических рамок показало, что в БД Inspec отражено 70,5% реально опубликованного материала (1 561 из 2 213).

Уточнение аналитической задачи в предписании Inspec <Limit your results> по полю <Publication Туре> позволило рассмотреть каждый из видов публикаций отдельно. По наибольшему количеству содержащихся в журнале статей было выделено 2 названия: «Fizika i tekhnika poluprovodnikov» (495) и его перевод «Soviet Physics — Semiconductors» (364). Статистика Inspec по видам описанной в изданиях научной деятельности была выведена по полю <Treatment>, которое включает характеристики содержания изданий: Application, Bibliography, Economic, Experimental, General or Review, New Development, Practical, Product Review, Theoretical or

¹ Следует отметить специфику БД Inspec: адреса всех авторов публикаций начали приводиться с 2008 г. (частично в 2007 г.), до этого указывался адрес лишь первого из них.

Мathematical. Анализ результатов разделения публикаций по этому критерию показал, что в институте проводятся экспериментальные (2 974) и теоретические (1 151) исследования, но немало и практических разработок (552). При этом Inspec отнес многие работы как к экспериментальным, так и к практическим одновременно, а теоретические совместил с математическими.

При продолжении анализа система ранжировала предметные области по количественному наполнению (табл. 1).

Ниже приведены 12 контролируемых терминов БД, с каждым из которых опубликовано более 300 работ. Это elemental semiconductors (1 066), silicon (1 013), iii-v semiconductors (795), gallium arsenide (649), semiconductor (425), annealing (384), semiconductor growth (378), semiconductor epitaxial layers (375), molecular beam epitaxial growth (356), germanium (355), silicon compounds (311) и aluminium compounds (309).

При ограничении результата поиска по полю <Classification Section> БД провела детализацию распределения публикаций по тематике. В БД Inspec 5 основных разделов: А (физика), В (электротехника и электроника), С (компьютеры и контроль), D (информационные технологии) и Е (производственные технологии), подразделяющиеся на рубрики, имеющие классификационные коды. Так, к разделу А Inspec причислил 3 723 работы, к В — 1 997. На третьем месте оказался раздел С — 70, и затем Е — 26 публикаций. В табл. 1 представлены классификационные коды, с помощью каждого из которых зашифровано свыше 200 статей.

Изучение динамики публикационной деятельности сотрудников института за последние 10 лет обнаружило ее пик в 2009 г. (рис. 2). При этом приведение к единству измерения публикационной активности путем вычисления доли научных публикаций ИФП в общем документопотоке, отраженном в БД Inspec (табл. 2), также показало продуктивность 2009 г.

Дальнейший анализ был проведен с помощью автоматизированной обработки экспортированных из БД Inspec 3 998 записей, позволившей получить данные о партнерстве ученых ИФП, об их предпочтениях в количе-

ственном составе при совместном проведении исследований и международном сотрудничестве.

Таблица 1. Распределение публикаций ИФП СО РАН по тематическим рубрикам (классификационным кодам) БД Inspec (указаны коды, к которым отнесено более 200 работ)

Классификационный код	Содержание	Количество публикаций
A6855	Thin film growth, structure, and epitaxy	608
B2520D	II-VI and III-V semiconductors	468
B2520C	Elemental semiconductors	382
A7320D	Electron states in low-dimensional structures	381
A8115G (1977-) B0520D (1999-)	Vacuum deposition	318
A6820	Solid surface structure	306
A6170T	Doping and implantation of impurities	259
A6865	Low-dimensional structures: growth, structure and nanoelectronic properties	250
B2530C	Semiconductor superlattices, quantum wells and related structures	245
A7830G	Infrared and Raman spectra in inorganic crystals	229
A7240	Photoconduction and photovoltaic effects; photodielectric effects	229
A7340L	Electrical properties of semiconductor-to- semiconductor contacts, p-n junctions, and heterojunctions	218
A7220M	Galvanomagnetic and other magnetotransport effects (semiconductors/insulators)	208

Изучение библиографических записей по количеству соавторов показало, что наибольшее число публикаций представлено тремя авторами (826). Коллективы авторов из четырех и двух ученых опубликовали по 726 и 723 статьи соответственно. На четвертом месте с большим количественным отрывом (467) стало соавторство из пяти человек, и еще меньше работ (375) было выполнено без соавторов.

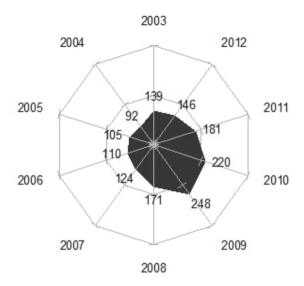


Рисунок 2. Количество публикаций сотрудников ИФП СО РАН по годам.

Таблица 2. Динамика публикационной активности по данным БД Inspec.

(по индексу по	Общее количество публикаций	Из них публикаций сотрудников ИФП СО РАН	
	(по индексу поля YR «Год издания»)	Количество	Доля (%)
2004	421 982	92	0,0218
2005	456 281	105	0,0230
2006	525 901	110	0,0209
2007	585 427	124	0,0212
2008	642 694	171	0,0266
2009	686 153	248	0,0361
2010	678 381	220	0,0324
2011	680 285	181	0,0266
2012	516 487	146	0,0283

Таблица 3. Совместные публикации ИФП СО РАН с российскими организациями в 2007-2012 гг. по данным БД Inspec.

Организация	Количество публикаций
Новосибирский государственный университет, г. Новосибирск	68
Физико-технический институт им. А.Ф. Иоффе, г. С-Петербург	38
Новосибирский государственный технический университет, г. Новосибирск	32
Томский государственный университет, г. Томск	28
Институт ядерной физики им. Г.И. Будкера СО РАН, г. Новосибирск	21
Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск	20
Институт неорганической химии им. А.В. Николаева СО РАН, г. Новосибирск	16
Объединенный институт ядерных исследований, г. Дубна	11
Институт физики металлов УрО РАН, г. Екатеринбург	9
Московский инженерно-физический институт (государственный университет), г. Москва	8
Институт физики прочности и материаловедения СО РАН, г. Томск	7
Институт физики микроструктур РАН, г. Нижний Новгород	7
Институт мониторинга климатических и экологических систем CO PAH, г. Томск	7
Институт лазерной физики СО РАН, г. Новосибирск	7
Северо-восточный федеральный университет им. М.К. Аммосова, г. Якутск	6
Институт радиотехники и электроники РАН, г. Москва	6
Институт физики им. Л.В. Киренского СО РАН, г. Красноярск	6
Московский физико-технический институт (государственный университет), г. Москва	6
Институт автоматики и процессов управления ДВО РАН, г. Владивосток	6

Обширная кооперация ИФП с отечественными организациями (440 публикаций) охватила большие университеты (как в азиатской, так и в европейской частях

страны), институты РАН и некоторые другие исследовательские организации, всего 73. В табл. 3 представлены 19 из них, имеющие более 5 совместных публикаций с ИФП СО РАН.

Также с 2007 г. исследования ИФП СО РАН выполнялись в партнерстве с учеными из 42 стран ближнего и дальнего зарубежья, с ними было опубликовано 474 документа. В табл. 4 указаны 12 стран, с учеными из которых Институт имел за этот период более 10 совместных публикаций. Как видно из табл. 4, в международном сотрудничестве доминировали Германия, США и Франция.

Таблица 4. Совместные публикации ИФП СО РАН с зарубежными учеными в 2007-2012 гг.

Страна	Количество публикаций	
Германия	87	
США	60	
Франция	51	
Украина	44	
Бразилия	27	
Белоруссия	18	
Польша	16	
Тайвань	15	
Испания	13	
Израиль	12	
Бельгия	12	
Португалия	12	

Одним из самых распространенных наукометрических показателей является индекс цитирования, подразумевающий показатель, который указывает на значимость данной статьи, и вычисляется на основе последующих публикаций, ссылающихся на данную работу. В БД Inspec поисковая функция для определения индекса цитирования отсутствует. Поэтому для выведения этого показателя мы обратились к БД «ПРНД».

Таблица 5. Публикации ученых ИФП СО РАН, имеющие наибольшее число ссылок по данным БД «ПРНД» за 2008-2012 гг.

Публикация	Кол-во ссылок
Sacepe, B., Chapelier, C., Baturina, T. I. et al. Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition // Physical Review Letters, 2008, v.101, iss. 15, p. 157006	77
Vinokur, V. M., Baturina, T.I. Fistul, M.V. et al. Superinsulator and quantum synchronization // Nature, 2008, v. 452, iss. 7187, p. 613	62
Beterov, I. I., Ryabtsev, I. I., Tretyakov, D. B. et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n <= 80 // Physical Review A, 2009, v. 79, iss. 5, p. 052504	44
Fistul, M. V., Vinokur, V. M., Baturina, T. I. Collective Cooper-pair transport in the insulating state of Josephson-junction arrays // Physical Review Letters, 2008, v.100, iss. 8, p. 086805	35
Lestinsky, M., Lindroth, E., Orlov, D. A. et al. Screened radiative corrections from hyperfine-split dielectronic resonances in lithium-like scandium // Physical Review Letters, 2008, v.100, iss. 3, p. 033001	35
Sacepe, B., Chapelier, C., Baturina, T.I. et al. Pseudogap in a thin film of a conventional superconductor // Nature Communications, 2010, v. 1, iss.9, p.140	29
Zhang, J.Q., Vitkalov, S., Bykov, A. A. Nonlinear resistance of two- dimensional electrons in crossed electric and magnetic fields // Physical Review B, 2009, v.80, iss. 4, p. 045310	27
Kvon, Ze-Don, Danilov, S.N., Mikhailov, N.N. et al. Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells // Physica E, 2008, v. 40, iss. 6, p. 1885 (Proc. of the 13th International Conference on Modulated Semiconductor Structures (MSS13)/17th International Conference on Electronic Properties of 2-Dimensional Systems (Genova, ITALY; July 15-20; 2007)	27
Stock, E., Warming, T., Ostapenko, I. et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs // Applied Physics Letters, 2010, v. 96, iss. 9, p. 093112	26
Medvedeva, D.A., Maslov, M.A., Serikov, R.N. et al. Novel Cholesterol-Based Cationic Lipids for Gene Delivery // Journal of Medicinal Chemistry, 2009, v. 52, iss. 21, p. 6558	22

В табл. 5 представлены 10 работ с наивысшим индексом цитирования за последние 5 лет. В табл. 6 — количество статей сотрудников института — действующих членов РАН и общее число ссылок на них, для сравнения приведены данные из списка «Суммарное цитирование статей автора по ISI (WOS) — не менее 1 000» проекта

«Кто есть кто в российской науке» по состоянию на 13.05.2013 г. (http://expertcorps.ru/science/whoiswho/ci86).

Таблица 6. Количество публикаций в рецензируемых журналах и их цитирований по данным БД «ПРНД» и проекта «Кто есть кто в российской науке»

Ученый	БД «ПРНД»		Общее кол-во цитирований в
	Кол-во пуб- ликаций	Суммарное кол- во цитирований	списке проекта «Кто есть кто в российской науке»
Латышев А.В., член-корреспондент РАН	64	73	1161
Двуреченский А.В., член-корреспондент РАН	60	136	2284
Асеев А.Л., академик РАН	32	18	1379
Чаплик А.В., академик РАН	22	24	2530

Сравнение в табл. 6 выявило значительные расхождения в показателях. Тем интереснее будет в предстоящей работе провести сопоставительный анализ библиометрических данных, полученных из различных БД, как следующий шаг в подготовке к юбилею института.

В заключение, можно резюмировать, что проведенное изучение наукометрическими методами во временной динамике научной деятельности ИФП СО РАН на основе данных зарубежной БД Inspec позволяет охарактеризовать ее как вполне успешную, продуктивную и выполняющуюся в условиях широкой отечественной и международной научной кооперации.

Литература

- 1. Асеев А.Л. Наш институт сегодня // 40 лет Институту физики полупроводников Сибирского отделения Российской академии наук. Новосибирск, 2004. С. 337-368.
- 2. Бородовский П.А. Из истории ИРЭ СО АН СССР 1958-1962 // 40 лет Институту физики полупроводников Сибирского отделения Российской академии наук. Новосибирск, 2004. C.22-35.
- 3. Неизвестный И.Г. Институт физики твердого тела и полупроводниковой электроники 1962-1964 // 40 лет Институту физики полупроводников Сибирского отделения Российской академии наук. Новосибирск, 2004. С. 5-21.
- 4. Российская академия наук. Сибирское отделение: Исторический очерк. Новосибирск: Наука, 2007. C.242.
- 5. Шабурова Н.Н. Библиометрический анализ научных достижений НИИ СО РАН // Современные исследования социальных проблем. 2010. № 3. С. 101-105.
- 6. Шабурова Н.Н. Отражение сибирской науки в ресурсах, содержащих библиометрические характеристики (по данным об Институте физики полупроводников СО РАН) // Новые технологии в информационно-библиотечном обеспечении научных исследований: сб. научных трудов / отв. ред. П.П. Трескова; сост. О.А. Оганова. Екатеринбург, 2010. С. 224-234.